Computerized Dead-Space Volume Measurement of Face Masks Applied to Simulated Faces.

نویسندگان

  • Israel Amirav
  • Anthony S Luder
  • Asaf Halamish
  • Chatib Marzuk
  • Marcelo Daitzchman
  • Michael T Newhouse
چکیده

BACKGROUND The dead-space volume (VD) of face masks for metered-dose inhaler treatments is particularly important in infants and young children with asthma, who have relatively low tidal volumes. Data about VD have been traditionally obtained from water displacement measurements, in which masks are held against a flat surface. Because, in real life, masks are placed against the face, VD is likely to differ considerably between masks depending upon their contour and fit. The aim of this study was to develop an accurate and reliable way to measure VD electronically and to apply this technique by comparing the electronic VD of commonly available face masks. METHODS Average digital faces were obtained from 3-dimensional images of 270 infants and children. Commonly used face masks (small and medium) from various manufacturers (Monaghan Medical, Pari Respiratory Equipment, Philips Respironics, and InspiRx) were scanned and digitized by means of computed tomography. Each mask was electronically applied to its respective digital face, and the VD enclosed (mL) was computerized and precisely measured. RESULTS VD varied between 22.6 mL (SootherMask, InspiRx) and 43.1 mL (Vortex, Pari) for small masks and between 41.7 mL (SootherMask) and 71.5 mL (AeroChamber, Monaghan Medical) for medium masks. These values were significantly lower and less variable than measurements obtained by water displacement. CONCLUSIONS Computerized techniques provide an innovative and relatively simple way of accurately measuring the VD of face masks applied to digital faces. As determined by computerized measurement using average-size virtual faces, the InspiRx masks had a significantly smaller VD for both small and medium masks compared with the other masks. This is of considerable importance with respect to aerosol dose and delivery time, particularly in young children. (ClinicalTrials.gov registration NCT01274299.).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Design of aerosol face masks for children using computerized 3D face analysis.

BACKGROUND Aerosol masks were originally developed for adults and downsized for children. Overall fit to minimize dead space and a tight seal are problematic, because children's faces undergo rapid and marked topographic and internal anthropometric changes in their first few months/years of life. Facial three-dimensional (3D) anthropometric data were used to design an optimized pediatric mask. ...

متن کامل

Dynamic dead space in face masks used with noninvasive ventilators: a lung model study.

The aim of this study was to determine what the influence of different designs of face masks and different noninvasive ventilator modes would be upon total dynamic dead space. Using a spontaneous breathing model, total dynamic dead space was measured when using 19 commercially available face masks and a range of ventilators in various ventilation modes. Total dynamic dead space during spontaneo...

متن کامل

Dead space variability of face masks for valved holding chambers.

BACKGROUND Valved holding chambers with masks are commonly used to deliver inhaled medications to young children with asthma. Optimal mask properties such as their dead space volume have received little attention. The smaller the mask the more likely it is that a greater proportion of the dose in the VHC will be inhaled with each breath, thus speeding VHC emptying and improving overall aerosol ...

متن کامل

Force-dependent static dead space of face masks used with holding chambers.

BACKGROUND Pressurized metered-dose inhalers with valved holding chambers and masks are commonly used for aerosol delivery in children. Drug delivery can decrease when the dead-space volume (DSV) of the valved holding chamber is increased, but there are no published data evaluating force-dependent DSV among different masks. METHODS Seven masks were studied. Masks were sealed at the valved hol...

متن کامل

Systematic errors and susceptibility to noise of four methods for calculating anatomical dead space from the CO2 expirogram.

BACKGROUND Anatomical dead space is usually measured using the Fowler equal area method. Alternative methods include the Hatch, Cumming, and Bowes methods, in which first, second, and third order polynomials, respectively, fitted to an expired CO2 volume vs expired volume curve, intercept the x-axis at the anatomical dead space. This study assessed systematic errors and susceptibility to noise ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Respiratory care

دوره 60 9  شماره 

صفحات  -

تاریخ انتشار 2015